Fire Protection Engineering Belmont Central Chicago2018-11-18T11:58:28+00:00

Fire Sprinkler System Engineering in Belmont Central Chicago

Contact Us

If you’re searching for a fast responding Fire Protection Contractor in Belmont Central Chicago Illinois? The one to go to is NY-Engineers.Com. Not only for Fire Protection Engineer but also Electrical Engineering and HVAC Engineering in Chicago. Call us at (+1) 312 767-6877

Contact Us
Construction Engineers

As of late when you approach any contractor or building management company form Edgebrook to Princeton Park Chicago, about a dependable HVAC Engineering in Chicago, the most popular answer is call NY Engineers. What’s very well known is that NY Engineers is probably your best option for anyone looking for a fire sprinkler design engineering in Belmont Central Chicago. At New York Engineers our staff has many years of experience designing fire protection and sprinkler systems from Tonawanda to Rotterdam, NY. Now, from our Chicago office we are helping contractor and builders in Belmont Central Chicago design the fire protection and sprinkler systems they need.

The danger of a building burnt down because of fire is a sight that nobody wants to enjoy. That is the reason why fire protection engineers are hired before a building or apartment is made. In case you are wondering who needs fire protection engineer, then your first name you should know will be the architect in the building. The same as an architect is very important to make sure that the style of your building is ideal and resistant to all ends; a fire protection engineer makes certain that the construction is safe from possible probability of fire.

Having prompt answer in the firefighting pros is alright but wouldn’t it be great if the fire never took place? You must consider “what if” as an alternative to experiencing the horrendous scene of the building catching on fire. Fire protection engineers browse through the design of the construction first and then chart the escape paths to be used during a fire. Also, they are responsible for adding many fire protection things in and outside the structure. Water hoses and pipes attached to the main water tank, and checking the condition of the fire extinguishers are some of the duties that the fire protection engineer carries out if they are hired.

Difference Between Belmont Central Chicago Fire Sprinkler Tech versus Protection Engineers

The Fire Protection Engineers Society includes a precise meaning of Fire Protection Engineers vs Tech. Both positions require a solid education in fire technology and practive as being a firefighter generally.

The engineers use principles to make use of systems and methods setups in a variety of buildings that help protect individuals and animals from injury during fires. Engineers study possibilities of where biggest fire hazards lie and where to install protection for example sprinklers. They make certain that the utilization of structures and any materials within them are created to keep risks as low as possible.

Engineers will likely supervise the fitting and repair of alarm systems, smoke detectors, and definately will do investigations of fires after it happens. It will help them stop such things from happening in the future.

This type of status uses scientific principles to aid improve the safety of individuals in homes and offices. A fire technician activly works to do the testing and maintenance of the systems which have been arranged and organized with the engineers.

They also needs to get the highest education and firefighting knowledge to be effective in the field. They might also work to aid put in sprinklers and fire alarm systems nonetheless they usually do not make the design of these systems just like the engineers do. There is a great possibility you would like more info on fire sprinkler engineer services in Belmont Central Chicago by NY Engineers we invite you to take a look at our Chicago Plumbing Engineering blog.

New CAD to Revit Modeling Related Blog Article

MEP Engineering Tips: 7 Ways to Minimize Mechanical Space

MEP Consulting Engineers

In any MEP engineering project, the Mechanical equipment carries out a fundamental role in residential, commercial, and industrial locations, performing functions such as:

  • Space cooling and heating
  • Supplying chilled or hot water
  • Refrigeration
  • Ventilation
  • Indoor humidity control

These types of equipment and their associated ductwork and piping are notorious for their high space requirements, but there are several ways to make mechanical installations more compact.

1)      Installing Boilers as Close to the Roof as Possible

Boilers that operate with the combustion of fuels such as oil, propane, natural gas, biomass, or biodiesel require a chimney to exhaust their flue gases. Since the chimney must cross the entire distance from the boiler to the rooftop, its space requirements are increased as the boiler is located farther from the uppermost level – there are more floors to go through.

Installing a boiler at the highest possible location in a building shortens the chimney, which offers three significant advantages:

  • The space that the chimney would have used on each floor is freed up for other purposes.
  • The installation becomes safer, because the risk of flue gases being released indoors is minimized.
  • The cost of the chimney is reduced.

An alternative to installing boilers on the attic or the uppermost floor of a building is to simply use a heating technology that does not require a chimney, such as an electric resistance heater or a heat pump. A solar water heater is also a viable option: it is located on the rooftop, saving indoor space, and it runs with sunlight, a free energy input.

2)      Installing Air Conditioning Units on Ceilings

The largest individual component of an air conditioning system is typically the condenser, which is normally located outdoors. When installed on the external walls of a home or building, condensers occupy plenty of space and may even represent an obstacle for outdoor circulation if located on the first floor.

Condensers also release a lot of heat, and the circulation of warm air may be restricted when outdoor spaces are reduced due to proximity with another building or a wall. This has two negative consequences that MEP engineering professionals must consider: warm air can make outdoor locations uncomfortable, and it reduces the operating efficiency of condensers. On the other hand, if a condenser is located on a rooftop, warm air can circulate more freely, and noise becomes less of an issue.

In large commercial or industrial facilities, the equipment used by air conditioning and cooling systems is much larger, but the same logic applies – installing these units on rooftops saves considerable outdoor space. However, this is only feasible if the structure is strong enough to support the weight. Examples of equipment that may be found outdoors in a typical commercial or industrial MEP engineering project settings include:

  • Packaged rooftop air conditioning units
  • Air-cooled chillers
  • Cooling towers for industrial processes or for water-cooled chiller plants

3)      Using the Same System for Cooling and Heating

A heat pump operates with the refrigeration cycle, the same physical principle on which air conditioners are based, with the difference that it operates in reverse – it extracts heat from the cooler outdoor environment and uses it for space or water heating. In addition, some heat pumps are reversible, which allows them to consolidate heating and cooling into a single piece of equipment.

Upgrading to a heat pump can also result in energy efficiency improvements. There are two key pieces of information to look for when comparing heat pump models:

  • The Seasonal Energy Efficiency Ratio (SEER) is the ratio of cooling output to energy input during the cooling season.
  • The Heating Seasonal Performance Factor (HSPF) is basically the same concept, but for when the heat pump is operating in heating mode.

The SEER and HSPF are ratios that relate BTUs (British Thermal Units) and watt-hours, and a higher value translates into reduced energy consumption: it means the unit needs less energy to meet a specific cooling or heating load. For example, an air conditioner with a SEER of 20 will only draw half the power of a SEER 10 unit, assuming both have the same cooling output.

Alternatively, unit efficiency may be reported as a Coefficient of Performance, which is also a ratio of cooling or heating output and power input, but using watts for all quantities. Heat pumps typically have a COP of 2.5 or more, which means they yield significant savings when replacing resistance heaters, whose COP is 1.

In MEP engineering, an ideal scenario for upgrading to a heat pump would be if a household uses a resistance heater and an old air conditioning unit. In this case, a heat pump would consolidate two devices into one, while improving energy efficiency in both modes of operation.

For industrial applications, using an absorption chiller is a viable option for consolidating heating and cooling systems. This type of chiller can use waste heat from a steam plant or an industrial process, and provide cold water for space and process cooling. It is important to note, however, that absorption chillers are viable only when there is sufficient waste heat; otherwise, a normal compression-based chiller is a better choice.

4)      Installing Mechanical Equipment in Normally Unused Spaces

Another viable strategy to minimize the useful indoor space on your next MEP engineering project that is typically taken up by mechanical equipment is to install these units in a location that is not normally used. One example of such locations is:

  • Roof Bulkheads – This is one type of structure that is found on many buildings and is rarely used. Their main purpose is providing access to the roof, and they tend to be used more during construction and maintenance than during actual building operation.

5)      Using Mini-Split Systems Instead of Packaged Rooftop Units for Small Buildings

Packaged rooftop units allow multiple condensers to be consolidated as a single unit, but they require considerable space for ductwork. In small residential and commercial locations, mini-split systems are often the superior choice, offering a simpler installation and superior energy efficiency. Packaged rooftop units normally go up to SEER 15, while mini-split systems are available with efficiency ratings of SEER 25 or above.

Mini-split systems are a practical choice in commercial locations that are split into several zones with independent schedules, such as open-air shopping malls. As locations become larger, rooftop packaged units emerge as the preferred choice – too many compressors and evaporators would be required to offer air conditioning with mini-split units.

6)      Vertically Aligning Equipment on Several Floors

Multi-story buildings normally have components that are repeated floor by floor, and mechanical equipment is no exception to this. For example, air conditioning systems in tall buildings often use a central chiller plant to cool water, which is then supplied to air handling units (AHU) that cool the air in each floor.

If AHUs and similar units are aligned vertically floor by floor, it is possible to distribute cold water to all of them with a single pipe running vertically across the building. Since ductwork is installed above the false ceiling, most mechanical equipment will be located out of sight.

The associated electrical installations providing power to mechanical equipment also become more compact when similar units are aligned vertically or horizontally. Multiple circuits can be installed within a single conduit run, and it is also possible to use a bus duct for equipment drawing high current.

7)      Hiring Qualified MEP Engineering Professionals for the Design Stage

A well-organized mechanical installation takes up less space, and making sure the layout is as simple as possible is a process that starts from the project design phase. If mechanical, electrical, and plumbing installations (MEP) are designed together, equipment and associated components can be specified and located with the following goals in mind:

  • Minimizing the space and materials requirements.
  • Avoiding clutter caused by components from different buildings systems.

There are now software packages that allow 3D MEP models to be created and visualized before starting the construction process — including Revit. These models are of great assistance when planning how mechanical installations will be laid out on your next MEP engineering project, and are also very useful for contractors during materials takeoff and construction.

Conclusion

Optimizing the space used by mechanical equipment in your MEP engineering projects offers several advantages beyond comfort. It may be possible to reduce the cost of installations, and in many cases it also increases energy efficiency. The best way to ensure a mechanical installation offers top performance and an optimal layout is to hire qualified designers and contractors for the project.

Popular searches related to Protection Engineering in Belmont Central Chicago