HVAC Engineering Galewood Chicago, IL2018-10-30T16:43:20+00:00

What Can Our HVAC Engineers in Galewood Chicago Do For You?

Contact Us!

When you re searching for a fast responding HVAC Firms in Chicago? Your best bet is to reach out to is NY Engineers. Not only for HVAC Firms in Chicago but also MEP Engineering and Sprinkler System Engineering in Galewood Chicago. Call us at (312) 767.6877

Contact Us!
Value Engineering

Since coming to market a great number of real estate investors throughout Ronkonkoma, New York already know that NY Engineers is the engineering firm to call when you’re searching for MEP Engineering in NYC. What many local real estate investors have not realized is the NY-Engineers.Com is also your top choice if you’re searching for HVAC Engineering services in Galewood Chicago, IL. If you want to learn more about what Galewood Chicago HVAC design engineers do? This can be an exceptional job which has a detailed list of responsibilities. An HVAC design personel will be asked to get through a number of challenges to resolve the core issue. This job needs superior expertise, proficieny, and the capability to deal with time wisely.

After an HVAC engineer is licensed to function, they are going to sign on with an engineering business and begin to operate various heating, cooling, and refrigeration systems. Their task is to design new and/or alternative options based on their client’s requirements. Each client is going to have a distinctive set of wishes whether or not it is related to constructing codes or personal performance prospects. Making use of this material, the engineer goes on a trek towards making something that is eco-friendly, energy-efficient and suitable for the location it is going to be used in – (residential/commercial/industrial). They are generally in charge of the original creations and managing the particular installation.

Generally speaking, an HVAC engineer in Galewood Chicago will likely be seen working at a design company or in a consulting team according to their many years of expertise. Most engineers shift right into a consulting job because they get older and acquire a better understanding of what’s expected of them.

Comparison: HVAC Engineer vs HVAC Technician

HVAC Technician and HVAC Engineer tend to be mistaken for the other. But, they have got different job functions with regards to working with HVAC systems. It is important to be aware of the variance both as a parton as well as an expert

An HVAC technician in Galewood Chicago carries a more hands-on job, which means they are generally seen on the way to a customer’s home to look at their current system. They often take care of the repairs, installations, and over-all upkeep which is required ever so often. Nearly all of their job is done alongside the buyer, which suggests they have to realize how to connect to people properly.

Having an HVAC engineer, they are accountable for creating a fresh HVAC system and ensuring it meets what a customer is after. It needs to fit what the property owner wants whether or not this involves their setup, property, or anything else of new system. They are also introduced to check on HVAC designs to make certain everything is in line with modern standards. That is why they could find themselves spending time in consulting firms or at local engineering businesses. That is basically the distinction between those two vocation choices; HVAC Technician vs HVAC Engineer. There is a great possibility you would like additional details on the HVAC Engineering services in Galewood Chicago, IL by NY Engineers you should stop by at our Galewood Chicago MEP Engineering blog.

New Galewood Chicago HVAC Engineering Related Blog

Mechanical Engineering Design Options to Heat and Cool Residential Buildings

HVAC Engineer Career Path

There is a broad range of mechanical engineering and design options available for meeting the heating and cooling needs of residential buildings. Normally, these systems differ in terms of the medium used to deliver their heating or cooling output.

  • Water Piping: Water source heat pumps, radiators using chillers, cooling towers, and boilers.
  • Air Ducts: Packaged rooftop units, packaged ceiling hung units
  • Refrigerant Lines: Split AC systems, VRF systems
  • Direct: Used by window-type air conditioners and PTAC units, which operatedirectly between indoor and outdoor locations, without ducts.

This article will provide an overview of some of the most common mechanical design options used for indoor residential spaces, as well as the strengths and limitations of each type of system:

Detailing Mechanical Engineering and Design Options

Mechanical Design Option #1: Four-Pipe System with Chiller, Cooling Tower, and Boiler

This mechanical design gets its name from the fact that it has two separate water circuits, one carrying hot water and another carrying chilled water, each with a supply and return pipe. The basic operating principle of four-pipe systems is the following:

  • Cooling is accomplished by a chiller and cooling tower: A chilled water circuit is used to remove heat from indoor spaces, and the cooling tower is used to reject it outdoors. If the chiller’s compressor comes equipped with a variable-speed drive, this system can offer a very high efficiency in cooling mode.
  • Heating efficiency is determined by the type of boiler. In general, gas-fired boilerstend to be more cost-effective than those running on oil or electrical resistance heating.
  • Fan-coil units are equipped with both hot and cold water coils, granting them the flexibility of either mode of operation.

The main advantage of four-pipe systems is their ability to use both modes of operation simultaneously and independently. This can be especially useful if heating and cooling needs are different across building zones, and especially in apartment buildings and multi-family dwellings where preferences and schedules normally vary by occupant. Of course, a four-pipe system is an expensive mechanical engineering system to install due to the presence of three separate water circuits: two for the distribution of cold and hot water, and a third one used by the chiller to reject heat through the cooling tower.

Mechanical Design Option #2: Water-Source Heat Pumps with Cooling Tower and Boiler

A heat pump can be described in simple terms as a reversible air conditioner: it can deliver indoor cooling through the refrigeration cycle, but can also operate in heating mode with a much higher efficiency than most types of boilers, especially electrical resistance boilers.

Due to their reversible operation, water-source heat pumps offer great flexibility in residential buildings. Individual units can be set to operate in different modes, and in combined heating and cooling applications the overall system can be extremely efficient:

  • Heat pumps in cooling mode extract heat from indoor spaces and release it into a common water circuit.
  • Then, heat pumps in heating mode can extract the heat now carried by the water, and release it indoors, as required.

The fact that heat pumps share the same water circuit means that the cooling tower and boiler only have to balance system loads, rather than meeting them fully:

  • If the cooling load is greater than the heating load, the cooling tower only has to reject the heat difference, not the total heat removed from all spaces.
  • The same logic applies if the heating load is higher than the cooling load: the boiler only has to make up for the difference, not the full heating load.
  • If the heating and cooling loads happen to balance each other out, both the cooling tower and boiler can remain off.

A four-pipe system lacks these capabilities: the chiller must assume the full cooling load while the boiler provides the full heating load – all the heat absorbed in the chilled water loop is rejected by the cooling tower, and can’t be used for space heating purposes because water circuits are independent.

HVAC systems based on water-source heat pumps are extremely efficient, although expensive due to the fact that every zone must be equipped with an individual heat pump, in addition to having a common water circuit, a cooling tower, and a boiler.

Mechanical Design Option #3: VRF System with Rooftop Condensers & Gas Boiler

VRF stands for variable refrigerant flow, and VRF systems get their name from the fact that refrigerant is used to transport heat instead of water:

  • One or more remotely located condensers provide a flow of refrigerant for multiple indoor fan-coils, and a variable speed drive is used to regulate flow according to load. The units can also provide their own heating.
  • For supplementary heating, a gas-fired boiler with perimeter radiation can be added to the system.
  • Two-pipe VRF systems require all fan-coils to operate in the same mode, but with three-pipe systems, it is possible to provide simultaneous heating and cooling for different areas of the building.

Other than operational flexibility, an advantage of this mechanical design option is their ease of installation: refrigerant lines are more compact than water piping and air ducts. These systems still have a relatively small market share in the USA, but are very common in Japan, where they were developed, and Europe. According to ASHRAE, VRF systems tend to have a comparable cost to that of chiller-based systems, potentially higher if the technology must be imported.

The modular nature of VRF systems is another strong point in favor of this technology. If there will be a building expansion, it is possible to expand the system by simply adding a new condenser and the corresponding indoor evaporators.

Mechanical Design Option #4: PTAC Units with Electric Resistance Heating

Packaged terminal air conditioning units (PTAC) are compact systems, very similar to old window-type air conditioners: the system is self-contained and does not require refrigerant lines, water piping, or air ducts, greatly reducing the installed cost. Some PTAC units are equipped with a resistance heater, allowing them to operate in both heating and cooling modes.

PTAC units offer the advantage of being self-contained and independent from each other. This gives them an advantage in projects that will be built in several stages, for example, apartment buildings, since it is possible to expand HVAC capacity as needed without having a common system on which all units depend.

The main limitation of this mechanical system is that they tend to be outclassed by other systems in terms of efficiency, especially when in heating mode. Resistance heating offers a coefficient of performance of 1.0, which means they must draw one watt of electricity per each watt of heating; on the other hand, heat pumps typically operate with a COP of 2.5 or more, or even above 4.0 if a high-efficiency heat pump is selected.

Concluding Remarks

There is a broad range of heating and cooling technologies available for residential buildings, and also a high degree of flexibility in how the overall system can be configured. No system can be considered superior to the rest under all circumstances – every project offers unique conditions that favor some technologies over others.

What kind of mechanical engineering design has worked the best for you? Let us know by commenting below.

Popular searches related to HVAC Engineering in Galewood Chicago, IL.