HVAC Engineering Logan Square Chicago, IL 2018-10-02T16:15:27+00:00

What Can Our HVAC Engineers in Logan Square Chicago Do For You?

Construction Engineering Salary

Since coming to market a great number of property owners throughout Huntington Station, NY already know that New York Engineers is the engineering firm to contact if you are ooking for Electrical Engineering in NY. What a lot local construction companies have not realized is the New York Engineers is also your best choice if you’re searching for HVAC Engineering services in Logan Square Chicago, IL. If you want more information on what Logan Square Chicago HVAC design engineers do? It is an exclusive trade with an a detailed selection of responsibilities. An HVAC design personel will have to go through a number of problems to solve the core issue. This career calls for superior expertise, proficieny, and the ability to handle time prudently.

Once an HVAC engineer is certified to operate, they are going to join up with an engineering firm and start to functions on various cooling, heating and refrigeration systems. Their function is usually to draw up new or additional choices based upon their client’s requirements. Each customer is going to have a distinctive set of wishes whether it is related to constructing codes or personal performance anticipations. Using all of this information, the engineer goes on a ride towards creating something which is eco-friendly, energy-efficient and well suited for the location it might be used in – (industrial, commercial or residential. They are usually responsible for the original creations and managing the particular installation.

Generally speaking, an HVAC design engineer in Logan Square Chicago is going to be seen working at a design company or perhaps in a consulting team according to their numerous years of skill. A great deal of engineers shift to a consulting job because they become older and obtain a better idea of what’s expected of them.

Comparing HVAC Technician Versus HVAC Engineer

HVAC Technician and HVAC Engineer are often confused with the other. Still, they may have different job functions in relation to overseeking HVAC systems. It is important to know the difference both as a client as well as a professional

An HVAC technician in Logan Square Chicago carries a more direct job, which suggests they are often seen heading to a customer’s property to see their existing system. They generally keep up with the repairs, installations, and over-all maintenance that is needed from time to time. Nearly all of their job is done together with the buyer, which implies they must discover how to communicate with people in the correct manner.

By having an HVAC engineer, they are responsible for creating a fresh HVAC system and making certain it fits just what a client needs. It needs to fit precisely what the house owner needs whether or not it has to do with their setup, property, or anything else associated with new system. Also, they are introduced to check on HVAC creations to ensure everything is in accordance with the highest standards. For this reason they could find themselves passing time in consulting tasks or at local engineering companies. That is the distinction between these occupation; HVAC Technician vs HVAC Engineer. There’s a great possibility you would like more details about the HVAC Engineering services in Logan Square Chicago, IL by NY Engineers you should visit at our blog.

New Logan Square Chicago HVAC Engineering Related Article

Mechanical Engineers Design HVAC Systems for Sensitive Environments

MEP Firm Definition

A well-designed HVAC system keeps temperature and moisture within a range that is considered comfortable for humans, while constantly renewing the air in a building and filtering out pollutants. Mechanical engineers are, in large part, responsible for ensuring that an HVAC system is operating as it should. The system must also provide an adequate airflow, since stagnant air and draftiness are both detrimental for performance.

In most residential and commercial settings, deviations from the ideal operating conditions are allowable if they are transitory, and there is generally a broad range of acceptable temperature and humidity values. However, there are sensitive environments such as healthcare facilities, where optimal conditions must be kept at all times. Many HVAC systems in less demanding environments are controlled based on temperature only, and humidity is controlled indirectly. However, sensitive environments require that each variable be monitored and controlled independently, and specialized high-performance filters may be required by codes.

Humidity Control in Sensitive Environments

Precise humidity control is typically required for environments with sensitive electronic equipment, healthcare facilities and other similar locations were human life or important systems are at stake. For example, the relative humidity levels for healthcare typically range from 40 to 60 percent:

  • Bacteria and viruses thrive with both low and high humidity levels.
  • Patients who suffer from asthma or allergic rhinitis also experience symptoms in response to humidity extremes.
  • Dry air absorbs moisture from mucous membranes, reducing the body’s ability to fight off infections.
  • Low humidity also increases static electricity accumulation, and discharges can damage modern medical equipment, which is important for medical procedures and generally expensive
  • Dust has a higher tendency to become airborne at low humidity levels, further increasing the chance of triggering allergic reactions.
  • High humidity creates the ideal conditions for mold and dust mites.

Depending on weather conditions, an HVAC system may be required to operate in humidification or drying mode at different times of the year. Some areas of a sensitive environment may have more stringent requirements than others; surgery rooms in hospitals are an example of this. It is the responsibility of qualified mechanical engineers to understand what is needed across various projects.

Air Dehumidification

There are two main approaches for controlling air humidity independently: the HVAC system can use cooling and heating coils in series, or a desiccant wheel can be deployed.

  • Cooling and heating coils: With this approach, air is cooled and dehumidified by the cooling coil until the desired relative humidity is reached. Since this normally results in overcooling, air then flows through a heating coil to raise its temperature back to an acceptable level. This way, both temperature and humidity requirements are met.
  • Desiccant wheel: This device captures air humidity downstream from the cooling coil, and releases it upstream for it to be condensed and gathered. At design conditions, this system does not require any heating input, although a preheating coil is added in case extra dehumidification is required.

Desiccant wheels typically save energy because they eliminate the need for overcooling and reheating. There may be exceptions, however, so it is important to assess each installation independently.

Air Humidification

Healthcare humidification systems are often based on steam, since heating water to high temperatures ensures the destruction of bacteria, especially Legionella. When steam is injected into an airstream, both humidification and heating are accomplished in the same step.

In the most sensitive environments, such as surgery rooms, steam-based humidification is normally required by law to ensure that the system is free from airborne bacteria. Adiabatic humidification is accepted in some sensitive applications, and it provides considerable savings compared with steam systems, although it is necessary to ensure it can be used legally.

Vapor Diffusion Retarders

Vapor diffusion retarders, also known as vapor barriers, complement air drying and humidification systems by providing a barrier against the diffusion of moisture through walls or other elements of the building envelope. Vapor diffusion retarders are classified into three main categories, depending on their rated permeance value:

  • Class I vapor barriers are rated for 0.1 perms or less. Some examples are glass, sheet metal and polyethylene.
  • Class II vapor barriers are rated for permeance values above 0.1 perms but less than or equal to 10 perms. Plywood and unfaced extruded polystyrene are two examples.
  • Class III vapor barriers have permeance values above 10 perms, and some examples are gypsum board, cellulose insulation, bricks and concrete blocks.

The specification of vapor barriers is strongly dependent on weather conditions, and can be especially challenging in northern states, due to how drastically temperature and relative humidity fluctuate throughout the year. Getting in touch with a qualified design firm is highly recommended.

Ventilation for Sensitive Environments: Air Changes per Hour and Filtering

Ventilation systems for sensitive environments must meet specific requirements in terms of air changes per hour (ACH). In surgery rooms, for example, the American Institute of Architects establishes 15 ACH, where 20% must be outdoor air.

  • In a surgery room with a floor area of 600 ft2 and a height of 10 ft, 15 ACH is equivalent to 90,000 ft3 per hour, or 1500 cfm. The outdoor air required would be 300 cfm to meet the 20% requirement.

Filters for sensitive applications must typically meet a minimum MERV rating, and in applications that are especially sensitive compliance with the HEPA standard may be required.

MERV Ratings

MERV stands for Minimum Efficiency Reporting Value, and it is a measurement scale for the effectiveness of filters, which was developed by ASHRAE in the 80s. The scale of MERV ratings ranges from 1 to 16, where larger numbers indicate that the filter is rated for smaller particles and has a higher average arrestance.

  • MERV 1-4: 60 to 80% arrestance, particles larger than 10.0 µm.
  • MERV 5-8: 80 to 95% arrestance, 3.0 to 10.0 µm.
  • MERV 9-12: 90 to 98% arrestance, 1.0 to 3.0 µm.
  • MERV 13-16: Over 95% arrestance, particles from 0.30 to 1.0 µm.

In healthcare applications, filters with MERV ratings of 7 or more are normally specified. In some applications, two filters in tandem are used, where the second has a higher MERV rating than the first.

HEPA Standard

HEPA stands for High-Efficiency Particulate Arrestance, and a filter must remove 99.97% of particles with a diameter of 0.3 µm to qualify as such. It is important to note that the term HEPA has been adopted to refer to any high-efficiency filter, but only those meeting the requirements set forth in the standard are real HEPA filters.

In healthcare applications, HEPA filters are widely used thanks to their ability to capture airborne bacteria and viruses. Once they have been trapped, high-power ultraviolet lights are used to kill them.

It is important to note that higher performance filters also involve an increased pressure drop, raising energy consumption. For this reason, it is important to select a filter with adequate performance for the application, but not over-specified.

General Recommendations from Mechanical Engineers for Sensitive Environment HVAC Design

The most important requirement for HVAC systems in sensitive environments is being able to control humidity and temperature simultaneously, while filtering out pollutants. Therefore, designs based on rules of thumb should be avoided:

  • Sizing air conditioning equipment in tons per square foot of floor area.
  • Sizing ventilation equipment in cfm per ton of HVAC capacity.

Instead, each system must be designed by mechanical engineers to meet a specific temperature and humidity range, as well as air changes per hour and percentage of outdoor air. Hiring the services of qualified engineering professionals is highly recommended to ensure that requirements are met.

Popular searches related to HVAC Engineering in Logan Square Chicago, IL.