HVAC Englewood Chicago2018-11-29T22:42:18+00:00

HVAC Englewood Chicago | Expert Power Efficient System Designs

Fire Protection Engineering Salary
Contact Us!

Don’t be fooled by the name NY-Engineers.Com is the top choice if you need a Full Service Heating Cooling Air Conditioning Furnace (HVAC) Engineering Firm in Chicago Illinois. We are not only an HVAC Chicago but also a leading provider of Sprinkler System Engineering services in Englewood Chicago. Call (+1) 312 767.6877

Contact Us!

In recent times A lot of individuals have been visiting our site looking for Mechanical Engineering in the Chicago area. This is due because of the reputation we have built in this kind of work. Nevertheless, a lot of builders from Lake Forest to Champaign, IL, do not know that New York Engineers is also a top choice for anyone in search of HVAC Chicago, IL!

The search for power efficient buildings involves energy efficient HVAC system design. This will include systems for architectural enclosure, domestic water heating, lighting, HVAC, and vertical transportation. The loads for your HVAC systems can come primarily from five different places including lighting (cooling), the property envelope (cooling and heating), ventilation (cooling and heating), equipment for program use (cooling) and occupancy (cooling).
The ventilation load might be a purpose of either the mechanisms required to be able to introduce it into a space and control contaminant concentration or the number of folks that will occupy the area. In the vast majority of climates in the eastern and southwestern areas of the united states, to reduce outter air flow can save energy whenever the

outside air is either humid and warm or very cold.
Controlling the ventilation rate will probably be based on occupancy which is called a type of demand control ventilation. This can be a common type of energy conservation plan which is used for buildings with irregular or crowded occupancy. Having cooling and heating loads reduced as low as possible can be carried out through the use of a higher performance building envelope, occupancy sensors, and high performance lighting that uses daylight response of lighting controls.

Chicago HVAC Engineers vs HVAC Techs

If you’ve ever considered the distinction between a HVAC Technician versus HVAC Engineers, then keep reading:

HVAC engineers are definitely the folks that supervise installing of air cooling systems for both commercial and residential buildings. They spend plenty of their day in offices doing advanced level organization and planning of installations but they do also see job sites every once in awhile.

But, HVAC technicians in Chicago usually do a lot of hands-on work with repair and maintenance. A HVAC technician may work together with an engineer to accomplish some of the installation task, specifically for smaller jobs. Generally speaking HVAC technicians do considerably more travel and could spend considerable time identifying leaks, changing filters, doing recharges or decommissioning old and outdated systems that use old refrigerants.

HVAC engineers may have the ability to make more decisions about systems that are used, and so they are definitely the folks that would offer advice about probably the most sensible refrigerants and which systems would best suit a much bigger building. In the trade, there exists some conflict between ‘the suits’ and ‘the ones that get their hands dirty’, but the two jobs do require a great familiarity with how air cooling does work. Lately a lot of people have been reading the NY Engineers website looking for things like HVAC Parts Chicago. With that said, the focus of our company is to be the top option for anyone seeking a HVAC Chicago and or any of our other services including Mechanical Engineering Engineering services. We ask that anybody looking for additional details about our Heating & Air Conditioning (HVAC) Engineering Firm in Chicago Illinois checks out at our blog…

New Blog Article Related to HVAC Firm in Chicago

Value Engineering: Performance Metrics of Heating and Cooling Equipment

Architectural Engineering Colleges

Many numerical indicators have been developed to describe the performance of heating and cooling equipment, and they provide a reliable basis to compare value engineering products. These metrics also allow a quick estimation of running costs for a specific piece of equipment.

When comparing HVAC equipment based on their performance metrics, there are two main guidelines to consider:

  • Different metrics cannot be compared with each other.For example, two air conditioning units with a SEER rating can be compared directly, but this is not possible if one has a SEER rating and the other has a COP (Coefficient of Performance). In this case, one of the values must be compared before comparison.
  • When conversion from one metric to another is not possible, equipment can be compared based on an estimation of running costs. For example, combustion-based appliances often have an AFUE (Annual Fuel Utilization Efficiency) value. The AFUE is not valid for heating equipment that runs on electricity, so the comparison must be based on costs.

With respect to the operating costs of heating and cooling equipment, keep in mind that performance metrics only provide estimates. For a precise heating and cooling load analysis it is necessary to carry out energy modeling, which accounts for several factors such as the yearly weather profile, operating schedules and building envelope conditions.

Energy Efficiency Ratio (EER) and Seasonal Energy Efficiency Ratio (SEER)

The EER and SEER are used for air-conditioning equipment, and both represent a ratio of cooling output in BTU to heating input in watt-hours. The metrics can also be used for heat pumps capable of running in cooling mode.

Although both the EER and SEER have units of BTU per watt-hour, there are important differences in how each value is determined; different pieces of equipment can only be compared if efficiency is reported with the same metric.

Energy Efficiency Ratio (EER)

The EER is a ratio of cooling output in BTU to electric energy input in watt-hours, for a fixed set of operating conditions:

  • Indoor temperature: 80°F
  • Outdoor temperature: 95°F
  • Relative humidity: 50%

Although the EER allows a direct comparison between different air conditioning systems, it cannot provide a reliable estimate of running costs. The EER is determined for a fixed temperature difference and relative humidity value, and these are conditions that show significant variation throughout the cooling. The Seasonal Energy Efficiency Ratio (SEER) provides a better estimate of actual performance, accounting for outdoor temperature variation.

Seasonal Energy Efficiency Ratio (SEER)

The SEER is like the EER, with the difference that it averages performance across a range of outdoor temperatures that is typical of the cooling season. When the running costs of air conditioning equipment are calculated with the SEER, a more realistic estimate is obtained, although it is still far from the precision offered by energy modeling.

Since 2006, all air conditioning systems manufactured in the USA must have a minimum SEER value of 13. If a manufacturer wants to receive the ENERGY STAR label for one of its products, the efficiency value must be within the top 25%. In addition, the ENERGY STAR label is only available for technologies that meet the following requirements:

  • Split-type central air conditioner: SEER ≥ 15, EER ≥ 12.5
  • Single-package central air conditioner: SEER ≥ 15, EER ≥ 12

The most efficient mini-split type AC units that run 100% on electricity offer SEER values above 28. Some units deploy solar power to boost the SEER above 35.

Upgrading to an AC Unit with a Higher SEER

There is a simple and convenient formula that can be used to estimate the energy savings when upgrading an air conditioning unit:

Percentage Savings=(1-(Current SEER)/(New SEER))x100%

For example, upgrading a first-generation SEER 10 mini-split system to a modern SEER 25 unit would yield the following savings:

Percentage Savings=(1-10/25)x100%=60%

Keep in mind that this quick formula only applies if the rated cooling output and operating schedules will remain the same after the upgrade. Otherwise, the energy consumption in kilowatt-hours must be calculated separately for the existing and projected running conditions.

Integrated Energy Efficiency Ratio (IEER)

The water-cooled and evaporative air conditioning systems used in commercial and industrial settings operate very differently from the smaller units found in homes and small businesses, and the SEER does not provide a reliable value engineering metric to describe their performance.

These AC systems are subject to varying load conditions and rarely operate at peak capacity, so the energy efficiency at 100% load does not represent actual operating efficiency. To address this, the Air-Conditioning Heating and Refrigeration Institute (AHRI) developed the IEER and provided a procedure to calculate it. The IEER was previously known as the IPLV, or Integrated Part-Load Performance.

Step 01: Part-Load Efficiency Values

The normal EER is calculated at 100%, 75%, 50% and 25% load. Outdoor air temperature is reduced proportionally for each load percentage, to reflect the fact that less cooling is required.

  • A = 100% load EER at standard outdoor temperature (95°F)
  • B = 75% load EER at reduced temperature
  • C = 50% load EER at reduced temperature
  • D = 25% load EER at reduced temperature

ANSI/AHRI Standard 210/240 provides the temperature value for each of the part-load conditions, depending on AC system characteristics.

Step 02: Calculating the EER

Once all four EER values have been calculated, the IEER is calculated according to the following formula provided by AHRI:

IEER=0.02A+0.617B+0.238C+0.125D

Note how the coefficient is only 0.02 for the full-load efficiency (A) and higher for part-load conditions (B, C and D). This accounts for the fact that commercial and industrial AC systems operate at part load for extended periods of time.

Heating Seasonal Performance Factor (HSPF)

The HSPF can be considered analogous to the SEER, with the difference that it applies for heat pumps in heating mode only; during the cooling season, the performance of heat pumps is described by the SEER, just like air conditioning equipment. It is important to note that reversible heat pumps require a different metric in each operating mode, and they cannot be interchanged although they are describing the same piece of equipment:

  • The HSPF is exclusive for heating mode.
  • The SEER is exclusive for cooling mode.

When purchasing a reversible heat pump, compare your heating and cooling loads throughout the year. If you use heating more, focus on the HSPF; for cooling, focus on the SEER.

Air-source heat pumps are the most common type in residential settings, and they must meet the following criteria to receive the ENERGY STAR label:

  • Split-type heat pump: HSPF ≥ 8.5
  • Single-package heat pump: HSPF ≥ 8.2

It is important to note that heat pumps in must also meet EER/SEER requirements in cooling mode to be eligible for the ENERGY STAR label. Since the efficiency of heat pumps tends to decrease as outdoor temperatures become colder, the minimum HSPF requirements are less stringent that those for the SEER and EER.

Annual Fuel Utilization Efficiency (AFUE)

The AFUE is used exclusively for combustion-based appliances such as boilers and furnaces, and it is the ratio of effective heating output to the total energy contained in the fuel consumed. According to the Department of Energy, old units tend to have an AFUE under 70%, while efficient boilers and furnaces reach up to 98.5%. Furnaces and boilers are also eligible for the ENERGY STAR rating if they meet the following criteria:

  • The minimum AFUE of gas furnaces is 95% for northern states, and 90% for southern states, where ENERGY STAR determines the states in each category. The minimum AFUE of oil furnaces is 85%. In all cases, fan power consumption must be kept below 2% of total furnace energy consumption, and air leakage must remain under 2% of total airflow.
  • The minimum AFUE for boilers if 87% if gas-fired, and 90% if oil-fired.

Keep in mind that you cannot compare the AFUE of a combustion-based appliance with the HSPF of a heat pump. In this case, you would have to estimate the yearly running costs, comparing the cost of the fuel consumed by the boiler or heater with the cost of the electricity consumed by the heat pump.

Coefficient of Performance (COP)

The COP is a ratio of thermal output (heating or cooling) to energy input, and therefore it can be used to describe any heating or cooling appliance. Keep in mind, however, that reversible heat pumps have a separate COP for each mode of operation, which correspond to the HSPF and SEER. Different pieces of equipment can be compared based on their COP it they run with the same energy source.

  • For example, you can conclude that a heat pump with a COP of 3.0 is less expensive to operate than a resistance heater with a COP of 1.0 – the energy source has the same cost in both cases.
  • However, the same cannot be said if you are comparing the heat pump with a gas heater that has a COP of 0.80 – the energy source is different for each piece of equipment.

ENERGY STAR requirements are generally specified in terms of HSPF, SEER and AFUE, but equivalent COP values are typically provided as well. Any of these performance metrics can be converted into an average COP, but it is important to consider energy source differences before proceeding with any comparison; the COP is an energy conversion ratio that does not account for the unit cost of the energy source (electricity, oil or gas).

Energy Factor (EF)

The energy factor is a ratio of heating output to energy input, and is normally used in water heating applications. Although in theory it could be used to describe space heating as well, the practice is not commonplace – the HSPF, AFUE and COP are preferred. Generally, the EF is used to describe:

  • Storage water heaters
  • Instantaneous or tankless water heaters
  • Heat pumps water heaters

The EF of a heating system describes overall performance, accounting for energy conversion efficiency, but also considering standby losses and cycling losses. The metric also applies for dishwashers, clothes washers and clothes dryers, but it is defined differently for each case.

Just like air conditioners and space heating devices, water heaters are eligible to receive the ENERGY STAR label if they meet a minimum EF, along with other requirements that are specific for each technology. Residential water heaters must offer the following EF to receive the label:

*For solar heaters, only electric or gas energy input is considered when calculating the energy factor. Solar heat is excluded because it is essentially free.

Concluding Remarks on Value Engineering in HVAC Equipment

Heating and cooling equipment can be compared with ease if all key performance metrics are understood. It is important to note, however, that only energy modeling provides a precise estimation of operating costs. To achieve the best results with any HVAC project, make sure you hire the services of a qualified engineering consultant or firm with an understanding of high-value engineering methods. When HVAC equipment is purchased based on “rules of thumb”, the resulting performance is generally poor.

Top Searches Related to HVAC Chicago